
ROSKILDE UNIVERSITETSCENTER ROSKILDE UNIVERSITY

Faggruppen for filosofi og Section for philosophy

videnskabsteori and science studies

TERTIUM NON DATUR
or

On reasoning styles in early mathematics

Jens Høyrup

F I L O S O F I O G V I D E N S K A B S T E O R I P Å
R O S K I L D E U N I V E R S I T E T S C E N T E R

3. Række: Preprints og reprints

2002 Nr. 1



Contribution to the symposium
MATHEMATICS AS RATIONAL ACTIVITY

Roskilde University, November 1–3

Two convenient scapegoats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Old Babylonian geometric proto-algebra . . . . . . . . . . . . . . . . . . . . . . . . . 2
Euclidean geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Stations on the road . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Other Greeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Proportionality – reasoning and its elimination . . . . . . . . . . . . . . . . . . . . 21
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

The arguments of the following paper are largely distilled from a variety of

topics I have worked on over the years; in the interest of relative brevity I have

been forced to leave out almost all of the factual background for the conclusions

I have drawn on earlier occasions. To an unpleasant extent, the bibliography

is therefore dominated by my own publications; further references to sources

and to works of other scholars are found in these.



Árpád Szabó in memoriam

Two convenient scapegoats

In [1972: 3, 14], Morris Kline wrote the following lines:

Mathematics as an organized, independent, and reasoned discipline did not exist
before the classical Greeks of the period from 600 to 300 B.C. entered upon the scene.
There were, however, prior civilizations in which the beginnings or rudiments of
mathematics were created.

...
The question arises as to what extent the Babylonians employed mathematical

proof. They did solve by correct systematic procedures rather complicated equations
involving unknowns. However, they gave verbal instructions only on the steps to
be made and offered no justification of the steps. Almost surely, the arithmetic and
algebraic processes and the geometrical rules were the end result of physical evidence,
trial and error, and insight.

Such blunt statements (as well as the less blunt but similar attitudes of many
fellow writers) have called forth objections from other quarters.[1] An as example
one may quote George Gheverghese Joseph’s statement [1991: 89f] that if “the
Greek dependence on Egypt and Babylonia is now recognized, the myth of the
‘Greek miracle’ will no longer be sustainable”.[2] Unfortunately for Joseph’s
intended undermining of “one of the central planks of the Eurocentric view of
history of progress” [1991: 90], the whole discussion of Egyptian and Babylonian
mathematics is nothing but support for Kline’s view.[3] Admittedly, Richard

1 In some sense these anti-Eurocentric objections have often been paradoxical, their aim
being to show that “non-Western” cultures had the same kind of (meta-)mathematics
as the Greeks: implicitly, the ideals of (what we find in) Greek mathematics are accepted.

As I shall argue in the end, certain mathematical cultures (not ethnic but professional
cultures) have had the attitude that under particular circumstances some mathematics
should not be reasoned, and have had it for a good reason.

2 Elsewhere, indeed, Joseph [1991: 125–129] goes into direct though imprecise polemic
with Kline.

3 It is immaterial for the present purpose that they are often awfully wrong in details
(terribly wrong datings, freely invented “translations”, confusion of modern interpretation
and ancient text, similar confusion between algorithm and theoretical algebra – see
[Høyrup 1992]) and thus allow opponents of the author’s general aim to conclude that
no good arguments can be found in favour of the existence of non-Greek, non–Greek-

1



Gillings [1972: 233] is quoted to the effect that a

nonsymbolic argument or proof can be quite rigorous when given for a particular
value of the variable; the conditions for rigor are that the particular value should
be typical, and that a further generalization to any value should be immediate

– but Joseph does not show that (nor discuss in which sense) the various rules applied
to particular cases he quotes from Egyptian and Babylonian material can really be read
as paradigmatic (or “potentially general”) “argument or proof” in Gillings’s sense.

In the following sections of the paper I shall show that much of Old Babylonian
mathematics was indeed reasoned in this sense; characterize the type of reasoning involved;
confront it with Euclidean reasoning about analogous cases; use this to characterize the
approach of Greek theoretical geometry as embodied by Euclid’s Elements; and briefly
discuss a different type of Greek mathematical reasoning. In the end I shall widen the
perspective toward other mathematical cultures.

Old Babylonian geometric proto-algebra
Kline as well as Joseph speak about “Babylonian mathematics” as if this entity

remained the same as long as the Babylonian culture lasted; so did until very recently
almost everybody who dealt with the topic without being a specialist of exactly this
historical field. At closer inspection, however, there are important differences between
the mathematics of the Old Babylonian and the Seleucid periods (c. 1900–1600 BCE and
c. 300–100 BCE, respectively). The large majority of texts comes from the Old Babylonian
period, on which I shall concentrate at first.

The Old Babylonian mathematical corpus consists of three parts: tables, tablets for
rough numerical work, and problem texts. Only the last group is relevant for the present
discussion – actually only the “procedure” texts which prescribe how to solve the problem
stated in the beginning.

A large part of the problem texts have been understood since they were first
interpreted in the 1930s to be of “algebraic” character.[4] Taken at their words, most of
them deal with the measurable sides and areas of rectangles and squares, but these were
taken to serve as mere dummies for unknown numbers and their products.
Correspondingly, the operations that were performed were supposed to be arithmetical
additions, subtractions, multiplications, etc. In this reading, the procedure descriptions
look like mere prescriptions of numerical algorithms, with no indication of the way these
have been found. A historian like Otto Neugebauer, who knew the corpus well, was fully
aware that they could not have been found without genuine mathematical reasoning,
and presupposed that the texts had gone together with a system of oral instruction
explaining the reasons for the steps; those general historians who knew only one or two
simple examples in translation often believed that they had been found by trial and error
(Kline, as we see, combines the two ideas).

Only a thorough investigation of the structure of the terminology and of the discursive

derived mathematics. In the view of anybody who shares the aim, this is of course the
most serious shortcoming of the book.

4 The history of these interpretations is described in [Høyrup 1996a].
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organization of the texts reveals that the texts have to be taken at their geometrical
words.[5] The problems are indeed (in a loose sense) homomorphic with those of
numerical equation algebra, but many of the operations are geometric, not arithmetical.

As a first example we may look at the text YBC 6967[6], which contains a single
problem dealing with two numbers igûm and igibûm belonging together in the table of
reciprocals, “the reciprocal and its reciprocal”. This problem thus illustrates another respect
in which the technique is similar to modern equation algebra: a functionally abstract “basic
representation” (with us abstract numbers, with the Babylonians measured or measurable
segments and areas) is used to represent magnitudes belonging to other ontological
domains but involved in relations that are structurally similar to those characterizing
the basic representation.

The text goes as follows in literal translation:

Obv.
1. [The igib]ûm over the igûm, 7 it goes beyond
2. [igûm] and igibûm what?
3. Yo[u], 7 which the igibûm
4. over the igûm goes beyond

5 The first thorough exposition of this analysis is [Høyrup 1990]; equally thorough but
probably more reader-friendly is [Høyrup 2002].

Part of the outcome of the structural analysis (and one of the reasons that the
arithmetical interpretation breaks down) is the sharp distinction between two different
additive operations (not merely synonyms for the same operation), between two different
multiplicative operations, two different halves, and no less than four different “multiplica-
tions”. Since we shall encounter the additions below, they may serve as example. One
of them I shall translate “appending”, the other “accumulation”. The former stands for
a concrete joining to a magnitude which conserves its identity (in the same sense as
addition of the interest conserves the identity of my bank account – interest on a loan
is indeed called “the appended” in Babylonian); the other may be used about the purely
arithmetical addition of the measuring numbers of ontologically different magnitudes –
e.g., of lengths and areas, of areas and volumes, or of men, days, and bricks carried by
the men in question during the days in question.

6 Based on the transliteration in [Neugebauer & Sachs 1945: 129]; as everywhere where
no translator is indicated the English translation is mine. The numbers are expressed in
a sexagesimal place value system (that is, a system with base 60), in which ´, ´́ , ... indicate
decreasing and `, ``, ... increasing sexagesimal order of magnitude (and ° when needed
“order zero”); 30´ is thus 30 60–1 = ½, 15´ = 15 60–1 = ¼. These indications of absolute
order of magnitude are not present in the original – the number notation of the mathemat-
ical texts (obviously not that of accounting and practical surveying!) is a floating-point
system.

Words in [ ] are damaged on the tablet and reconstructed from parallel passages;
words in ( ) are added for comprehensibility.
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5. to two break:[7] 3°30´;

Figure 1. The representation
of the igûm-igibûm problem

of YBC 6967.

6. 3°30´ together with 3°30´
7. make hold:[8] 12°15´.
8. To 12°15´ which comes up for you
9. [1` the surf]ace append: 1`12°15´.

10. [The equalside[9] of 1`]12°15´ what? 8°30´.
11. [8°30´ and] 8°30´, its counterpart,[10] lay down.

Rev.
1. 3°30´, the made-hold,
2. from one tear out,
3. to one append.
4. The first is 12, the second is 5.
5. 12 is the igibûm, 5 is the igûm.

What goes on may be followed in the diagram of
Figure 1. We should expect the product of the two
numbers to be 1, but it is actually meant to be 60
(whether due to the floating-point character of the
number system or to the origin of the table of recipro-
cals as a tabulation of aliquot parts of 60 is uncertain).
The two numbers are thus represented by the sides
of a rectangle with area 1` (as obvious, e.g., from the
reference to 1` in obv. 9 as a “surface”. Since we are
told that the igibûm exceeds the igûm by 7, the length
of the rectangle exceeds the width by 7. This excess
(with appurtenant section of the rectangle) is bisected,
and the outer part moved around so as to contain together with the inner part
a square (3½), whose area will be 12¼. When the original rectangle (transformed
into a gnomon) is joined to this, a square with area 60+12¼ = 72¼ is produced.
The “equalside” of this area is 8½, and so is its “counterpart”. When that part
of the rectangle which was “made hold” is restored to its original position, we
get the original length, the igibûm, which will thus be 8½+3½ = 12. But before

7 “Breaking” is a bisection that produces a “necessary half”, a half that could not have
been chosen differently – e.g., that half of the base of a triangle that serves in area
calculation. On the other hand, if a problem states that a square area and a half of the
side are accumulated, the other, “accidental” half occurs – it might just as well have been
a third.

8 “Making a and b hold” stands for the construction of the rectangle contained by the sides
a and b – henceforth (a,b).

9 The “equalside of A” (in the terms of other texts, that which “is equal along A”) is the
side of A when this area is laid out as a square; numerically it corressponds to the square
root of A.

10 The “counterpart” of an “equalside” is the side with which it has a corner in common.
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we can restore it, we must remove it from the place where it was put; this
removal produces the igûm, which must therefore be 8½–3½ = 5.

As we see, no attempt is made to discuss why or under which conditions the
operations performed are legitimate and lead to the correct result. On the other
hand it is intuitively obvious, once we are familiar with the properties of
rectangles, that everything is correct. In this sense the prescription is, as
formulated by Karine Chemla ([1991, 1996], and elsewhere) regarding Chinese
mathematics, algorithm and proof in one.

The clay tablet contains no drawing; a few others do, but only as support
for the statement, never as a supplement to the prescription. For this reason we
cannot know the precise character of the diagrams that supported the reasoning –
they may have been drawn in sand strewn on a brick floor, on a wall, or in any
other medium that has not been conserved; we do not even known to which
extent trained calculators would make actual drawings, and to which extent they
would rely on mental geometry. We may be confident, however, that drawings
were made use of at some stage of the instruction – mental geometry builds on
previous experience with material geometry, just as mental addition of multi-digit
numbers presupposes previous exposure to pen-and-paper algorithms for almost
all of us; we may also be fairly confident that the diagrams in case were structure
diagrams and not made carefully to scale – field plans, at least, had this character
(see Figure 2, a plan from the 21st century BCE). As we see, only the right angles
(those angles which are essential for the determination of areas) are rendered
correctly; in general, the Babylonians seem not to have regarded angles as
quantifiable magnitudes – expressed in a pun, an angle which was not “right”
was simply considered “wrong”.

The notion of a “naive” proof integrated in the algorithm may astonish us,
but should not do so. How, indeed, will we normally treat the corresponding
problem in symbolic algebra if we merely need to solve it? More or less in the
following steps:

x–y = 7 xy = 60 (1)

= 3½ (2)x–y

2

= 12¼ (3)( x–y

2
)2

= 12¼+60 = 72¼ (4)( x–y

2
)2 xy

= 72¼ (5)( x y

2
)2

=



Figure 2. Field plan as drawn on the tablet (left) and in true proportions (right). From [Thureau-
Dangin 1897: 13, 15].
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naively; so did any equation algebra until the advent of the Modern era. And
just as that of the Babylonian calculator, our approach is analytic: we take the
existence of the solution for granted, manipulate it as if it were known, and stop
when we have disentangled the unknowns from the complex relationships in
which they were involved.

Whereas the geometrical diagrams on which the reasoning was made have
not survived, a few texts have transmitted the kind of explanations which will
normally have been given orally. All are from Susa, a peripheral area (which
may be the reason that explanations which elsewhere were transmitted within
a stable oral tradition had to be put into writing). One – TMS XVI – explains
the transformations of two linear equations.[11] The first transformation runs
as follows in translation:[12]

1. [The 4th of the width, from] the length and the width to tear out, 45´. You,
45´

2. [to 4 raise[13], 3 you] see. 3, what is that? 4 and 1 posit,[14]

3. [50´ and] 5´, to tear out, [posit]. 5´ to 4 raise, 1 width. 20´ to 4 raise,
4. 1°20´ you 〈see〉 , 4 widths. 30´ to 4 raise, 2 you 〈see〉 , 4 lengths. 20´, 1 width,

to tear out,
5. from 1°20´, 4 widths, tear out, 1 you see. 2, the lengths, and 1, 3 widths,

accumulate, 3 you see.

11 The use of the term “equation” is no anachronism. The equations of a modern engineer
or economist state that the measure of some composite magnitude equals a certain number,
or that the measure of one magnitude equals that of another; exactly the same is done
in the Babylonian texts.

12 Based on the hand copy and transliteration in [Bruins & Rutten 1961: 91f, pl. 25], with
corrections from [von Soden 1964]. Cf. revised edition of the full tablet in [Høyrup 1990:
299–302]. The translation in the original edition should be used with caution, and the
commentary is best disregarded completely.

13 “Raising” designates the determination of a concrete magnitude by means of a
multiplication, and presupposes a consideration of proportionality. Originally the metaphor
referred to the determination of a prismatic volume with height h, obtained by “raising”
the base from its virtual height of 1 cubit (presupposed by the metrology, which measured
volumes in area units) to the real height.

14 “Positing” appears to mean “taking note of” materially, at times on a counting board,
at times by writing a length along a line as in Figure 2.
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6. Igi 4 de[ta]ch,[15] 15´ you see. 15´ to 2,

Figure 3. The situation of
TMS XVI #1.

lengths, raise, [3]0´ you 〈see〉 , 30´ the
length.

7. 15´ to 1 raise, [1]5´ the contribution of the
width. 30´ and 15´ hold.

8. Since “The 4th of the width, to tear out”,
it is said to you, from 4, 1 tear out, 3 you
see.

9. Igi 4 de〈tach〉 , 15´ you see, 15´ to 3 raise, 45´ you 〈see〉 , 45´ as much as (there
is) of [widths].

10. 1 as much as (there is) of lengths posit. 20, the true width take, 20 to 1´
raise, 20´ you see.[16]

11. 20´ to 45´ raise, 15´ you see. 15´ from 3015´
[17] [tear out],

12. 30´ you see, 30´ the length.

The equation deals with the length ( ) and the width (w) of a rectangle – see
Figure 3; in the actual case, however, this concrete meaning is relatively
unimportant. In line 1, we are indeed told (in symbolic translation) that

( +w)–¼w = 45´ .

At first we are instructed to multiply the right-hand side by 4, from which 3
results. In line 2, the meaning of this number is asked for; the explanation given
in lines 2–5 can be confronted with Figure 4, which may correspond more or
less closely to something the author had in mind, and which is anyhow useful
for us. As we observe, no problem is solved, the explanations presuppose (and
the student is thus supposed to know) that the length is 30´ and the width 20´,
their sum 50´ and the fourth of the width 15´.

In line 6, the equation is multiplied by ¼, from which follows both the
“contribution of the width”, that is, the value of the member (1–¼)w, and the
coefficients (“as much as there is”) of length and width.

15 igi n designates the reciprocal of n. For numbers where this was possible, division by
n was performed as a raising to igi n (in administrative calculation it was always possible,
since all technically relevant coefficients were rounded to numbers that possessed a
convenient igi).

Finding igi n was spoken of as “detaching” it; the idea was probably that one part
was detached from a bundle of n parts of unity.

16 This step may refer to a distinction between a “real” field with dimensions 30 and 20
(180 m × 120 m, since the tacitly presupposed length unit was the “rod” equal to c. 6 m)
and a “model field” 30´ × 20´, i.e., 3 m × 2 m, certainly more easily drawn in the school
yard; since the text does not indicate absolute order of magnitude this must remain a
hypothesis.

17 This renders the non-standard way ( ) in which “45” is written in this place in the
tablet.
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Two other didactical expositions are found

Figure 4. The transformations of
TMS XVI #1.

in the text TMS IX #1 and #2.[18] Both deal with
geometry of the kind that was used to represent
the igûm and igibûm in YBC 6967. They run as
follows:

#1
1. The surface and 1 length accumulated,

4[0´. ¿30, the length,? 20´ the width.]
2. As 1 length to 10´ [the surface, has been appended,]
3. or 1 (as) base to 20´, [the width, has been appended,]
4. or 1°20´ [¿is posited?] to the width which 40´ together [with the length

¿holds?]
5. or 1°20´ toge〈ther〉 with 30´ the length hol[ds], 40´ (is) [its] name.
6. Since so, to 20´ the width, which is said to you,
7. 1 is appended: 1°20´ you see. Out from here
8. you ask. 40´ the surface, 1°20´ the width, the length what?
9. [30´ the length. T]hus the procedure.

#2
10. [Surface, length, and width accu]mulated, 1. By the Akkadian (method).
11. [1 to the length append.] 1 to the width append. Since 1 to the length is

appended,
12. [1 to the width is app]ended, 1 and 1 make hold, 1 you see.
13. [1 to the accumulation of length,] width and surface append, 2 you see.
14. [To 20´ the width, 1 appe]nd, 1°20´. To 30´ the length, 1 append, 1°30´.
15. [¿Since? a surf]ace, that of 1°20´ the width, that of 1°30´ the length,
16. [¿the length together with? the wi]dth, are made hold, what is its name?
17. 2 the surface.
18. Thus the Akkadian (method).

In #1, as we see, we are told that the arithmetical sum of the length and the area of a
rectangle is A+ = 40´; once again, the explanation of what goes on presupposes the
student to know that the length is 30´ and the width 20´. The text then explains how
this is to be given a concretely meaningful interpretation. The trick is to replace the
length by a rectangle (1, ), which corresponds to joining an extra “base 1” to the
width, as shown in Figure 5 (the orientation of which follows from the designation of
the extension as a “base”). The resulting total “width” is 1°20´; since the total area is
40´, this is seen to correspond to the length 30´, as it should.

In #2, we are told instead the arithmetical sum of the length, the width and the
area, A+ +w = 1. Once again, the dimensions are presupposed to be known, = 30´,
w = 20´, as can be seen in line 14. This time we are told to add (1,1) = 1 to the
sum A+ +w; the result is then shown to be the area of a new rectangle with length

18 Based on the transliteration and hand copy in [Bruins & Rutten 1961: 63f, pl. 17], with
corrections from [von Soden 1964]. Cf. revised edition in [Høyrup 1990: 320–323]. Even
in this case, the translation and the commentary in the original edition ask for benign
neglect.
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L = 1+30´ = 1°30´, width W = 1+20´ = 1°20´ – cf. Figure 6.[19] This

Figure 5. The
configuration
described in
TMS IX #1.

section of the text is said to explain the “Akkadian method”; since
the trick that distinguishes #2 from #1 is the joining of a quadratic
complement to a (pseudo-)gnomon, the “Akkadian method” is likely
to be exactly this trick, basic for the solution of all mixed second-
degree problems.

#3 of the tablet, the last problem and a problem in the proper
sense, combines the equation of #2, A+ +w = 1, with an equation of
the same type as the one explained in TMS XVI though more
abstruse – namely

(3 +4w)+w = 30´ .1

17

This is reduced, this time without didactical explanation, to

3 +21w = 8°30´ ,

after which the corresponding equation for “the length and width of
the surface 2” (L and W) is derived,

3L+21W = 32°30´ .

Since (L,W) = 2, (3L,21W) is found to be 2 3 21 = 1`3 (i.e., 63), and in the end
the resulting rectangle problem for Λ = 3L, Ω = 21W,

Λ+Ω = 32°30´ , (Λ,Ω) = 1`3

(the additive analogue of the problem solved in YBC 6967) is solved, and first L and
W, next and w are found. No didactical explanation of how to solve the rectangle
problem is extant, but we may safely assume that such an explanation was at hand
and that its style was similar to what we know from TMS XVI and TMS IX #1–2.

Before we leave the Old Babylonian period it should be pointed out that certain
aspects of the procedure descriptions reflect the presence of “critique”, that question
for the reasons for and the limits of the validity of the procedure which is the
antithesis of the “naive” approach. One is the precedence of “tearing-out” over
“appending” in YBC 6967, rev. 2–3, the other the explicit introduction of the “base 1”
in TMS IX #1.

That these features of the text are “critical” only becomes visible when the
historical development of Old Babylonian “algebra” is understood, which requires
another structural analysis of the corpus, this time associating the distribution of

19 This presence of several “lengths” and “widths” shows why the exposition needs to
presuppose that the measures of the configuration are known: these measuring numbers
serve as identifying tags, and are needed for this purpose in the absence of letter or similar
symbols.

Even many genuine problem texts refer to the value of certain entities before they
are found. This may give the impression that the problems are overdetermined and their
authors hence mathematically incompetent. This, however, is a mistaken reading: the
information which is made use of never exceeds what is necessary; this constitutes the
set of “given numbers”, which is always kept strictly apart from those numbers which
are “merely known” and used as identifiers.
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synonyms and characteristic phrases with

Figure 6. The configuration of
TMS IX #2.

orthography and what (little) is known about the
archaeological provenience of tablets (most, indeed,
have been bought by museums on the antiquity
market), and correlation of the problems found in the
Old Babylonian corpus with those found in a number
of other historical contexts (Seleucid and other Late
Babylonian problem texts, ancient Greek theoretical,
Neopythagorean and practitioners’ mathematics,
Arabic algebra and agrimensorial texts, Jaina and
Italian abbaco mathematics). I shall not attempt to
reduce the necessary complex arguments to what can
be contained in a few paragraphs[20] but only sum
up the relevant results.

In the later third and incipient second millennium BCE, a restricted number of
geometrical riddles circulated in a lay (that is, non-scribal, non-schooled) and
probably Akkadian-speaking[21] environment of surveyors/practical geometers. A
number of these were to be solved by means of the kind of naive cut-and-paste
geometry which we have encountered in YBC 6967 and by application of the trick of
the quadratic completion (thus for good reason designated the “Akkadian method”;
the trick seems to have been discovered at some moment before c. 1900 BCE, and
probably after c. 2200 BCE): to find the side of a square from the sum of the side or
“all four sides” and the area, or from the difference one or the other way around; to
find the sides of a rectangle from the area and the diagonal or from the area together
with the sum of or difference between the sides (with a few variants); problems
dealing with two concentric squares (with given sum of/difference between the sides
and the areas) were apparently solved by means of standard diagrams.

In the nineteenth century BCE, these problems were adopted into the Old
Babylonian scribe school, where they gave rise to the development of the so-called
“algebra” (which is much more refined than can be seen from the above examples,
solving mixed third-degree problems by means of factorization – reducing
biquadratic problems and even a bi-biquadratic problem stepwise; inverting the role
of unknowns and coefficients; etc.). As it turns out, those text groups which are
closest to the lay tradition do not respect the “norm of concreteness” according to

20 The structural analysis of the corpus is described in [Høyrup 2000b], and (with some
extensions and minor revisions) in [Høyrup 2002: 317–361]. The place of Old Babylonian
“algebra” in the network of mathematical cultures was first investigated in [Høyrup
1996b]; a more thorough exposition is [Høyrup 2001]. Information on the latter topic is
also given in [Høyrup 2002: 362–417, passim].

21 The hegemonic and scribe school language of the third millennium was Sumerian.
However, the presence of Akkadian (later split into a Babylonian and an Assyrian dialect)
is attested already before 2500 BCE, gradually rising to become the dominant language
in the early second millennium. With extremely few exceptions the language of the Old
Babylonian mathematical texts is Akkadian, though the writing often makes heavy use
of Sumerian word signs (as English writing may make use of the medieval word sign
for Latin videlicet, rendered as viz yet presupposing a pronunciation “namely”).
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which “tearing-out” must precede “appending” of the same entity but use the elliptic
phrase “append and tear out”; some early texts, moreover, follow the habit of many
lay surveying traditions from elsewhere and operate with a notion of “broad lines”,
that is, with the idea that a line carries an inherent standard width[22]. For this
reason, they are able to “append” sides to areas, which indeed they do.

The school environment, however, appears to have found it difficult to accept
the conflation of linear and planar extension, and therefore formulated the
inhomogeneous sums as “accumulations” (namely, of the measuring numbers),
devising moreover a variety of designations for the standard width which transforms
a side into a rectangular area[23]. Some schools also seem to have found it absurd to
“append” something which is not yet at hand, and therefore introduced the “norm of
concreteness”. If “critique” is understood as investigations of why and under which
conditions our usual maive ways and conventional wisdom hold good,[24] then these
are full-blown examples.

The chronological dissection of the Old Babylonian corpus allows a final
observation of importance for our topic.[25] All above examples were formulated
around paradigmatic cases, though in agreement with Gillings’s criteria for when an
argument from a paradigmatic case can be considered rigorous – cf. p. 2. This is no
accident: almost all Old Babylonian mathematical texts that present us with explicit
or implicit arguments have this character. There are, however, exceptions, and a few
texts do indeed formulate rules in general terms. These rules may build on insight
and argument, and can hardly have been invented without the intervention of some
kind of mathematical insight; the rules themselves, however, only prescribe steps to
be performed, and contain no trace of an argument.[26] Interestingly, all such
attempts at general formulation belong in the earliest texts. The way such rules turn
up in later sources suggest that they were a borrowing from the lay tradition, within
which they may indeed have been very useful.[27] Within the school, however, they
were soon eliminated, being both ambiguous when not supported by an example

22 As does cloth today, when we buy “three yards of curtain material”. The notion of the
“broad line” and its appearance in a number of practical geometries is examined in
[Høyrup 1995].

23 One of these designations is the “base” of TMS IX #1; but at least two alternatives are
attested in the corpus.

24 “Untersuchung der Möglichkeit und Grenzen derselben”, as expressed in Kant’s Critik
der Urtheilskraft (B III [Werke V, 237]).

25 See [Høyrup 2002: 344, 383, and passim].

26 Nor should they, this is not the nature or purpose of a rule – our multiplication table
contains no hint of the role of associativity and distributivity of the operations involved.

27 The general rule is an adequate tool for an oral tradition, being more easily remembered
mechanically and transmitted faithfully than the full paradigmatic example; explanations
and examples can then be improvised once the master knows what is meant by a possibly
ambiguous rule. A parallel is offered by the relation between fixed formulae and relatively
free use of these by the singer in oral epic poetry, see [Lord 1960: 99–102 and passim]).
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and pedagogically useless (probably because they were deprived of argument). The
absence of abstract general rules is thus, like the compliance with the norm of
concreteness, no consequence of a primitive mind unable to free itself from concrete
thought; to the contrary, both have resulted from deliberate pedagogical or
philosophical choice.

Euclidean geometry
Figure 1 is quite similar to the diagram of Elements II.6 – see Figure 7. Since the

underlying mathematical structures are also analogous (to the extent a problem can
be analogous with a justification of the way it is solved), it seems obvious to look
closer at this Euclidean proposition.

In the Thomas Heath’s faithful translation [1926: I, 385] it states the following:

If a straight line be bisected and a straight line be added to it in a straight line,
the rectangle contained by the whole with the added straight line and the added
straight line together with the square on the half is equal to the square on the
straight line made up of the half and the added straight line.

Next follows what Antiquity would apparently see as a particular example
with indubitable paradigmatic value[28] but which Kline (and most modern
readers) have come to regard as actually and not only potentially
general:[29]

For let 〈any〉 straight line AB be bisected at the point C, and let 〈any〉 straight line
BD be added to it in a straight line; I say that the rectangle contained by AD, DB
together with the square on CB is equal to the square on CD.

The proof starts by constructing the latter square (CEFD) and drawing the
diagonal DE. Next through B the line BHG is drawn parallel to CE or DF (H
being the point where the line cuts DE) and through H the line KM parallel
to AB or EF. Finally, through A the line AK is drawn parallel to CE or DF.

Now the diagram is ready, and with reference to the way the con-
struction was made AL is shown to equal HF. Adding CM to both,
the gnomon CDFGHL is seen to equal AM. Further addition of LG shows
that AM together with LG equals CF, as stated in the theorem.

The second part of the proof follows the pattern of the cut-and-paste
procedure of YBC 6967 precisely. The important difference is the presence of
the first part. Thanks to this, things are not just “seen”, they are as firmly
established as required by the norms of Greek geometry – we do not move
areas around and glue them together, we prove that one area ( AL) is equal

28 Apart from the use of the habitual format rule–example and the precise wording, this
interpretation is supported, for instance, by Aristotle’s analogous reference to geometric
arguing which is correct if only we avoid including in the premises we draw on the
particular characteristics of the drawing made on the ground (Metaphysics Μ, 1078a19–20).
See also the detailed discussions in [Mueller 1982: 11–14] and [Netz 1999: 247-258]

29 Trans. [Heath 1926: I, 385], with minor corrections in 〈 〉 .
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to another ( HF). Even the fact that the gnomon

Figure 7. The diagram of
Elements II.6.

CDFGHL together with LG is identical with CF),
though not argued in detail, could be proved
rigorously by repeated use of proposition II.1.

The first part of the proof of proposition II.6
can thus be seen as a critique which consolidates
the well-known. Other propositions and proofs
from the sequence Elements II.1–10 invite to make
similar observations and interpretations. To this
we may add that the riddles of the surveyors’
tradition were doubtlessly known in classical Antiquity – as we shall see
(below, p. 19), the riddle of “the four sides and the area” turns up in the
pseudo-Heronian Geometrica. The whole sequence repeats matters that were
familiar in the surveyors’ tradition at least since the earliest second
millennium BCE; many of the propositions, moreover, are never used
explicitly later on in the work, which supports the interpretation that their
critical consolidation was an aim in itself. Finally, all are proved
independently, although a derivation of one from the other would often
have been easy (actually, II.5 and II.6 are equivalent, and so are II.9 and
II.10); what needs to be consolidated is thus not only the customary
knowledge contained in the propositions but also the traditional naive-
geometric argument.[30]

Greek theoretical geometry as a whole was evidently much more than a
consolidation of the well-known; in as far as its ideals of what constitutes a
proof are concerned, however, book II of the Elements may be regarded as
representative. In aiming at critique of the already familiar it is certainly no
first in the history of mathematics – as we have seen, something similar was
made in the Old Babylonian scribe school, and it is part of the dynamics of
any institutionalized teaching of mathematics at levels where appeals to the
reasoning of the students are required.[31] In the Old Babylonian school,
however, the role of critique had been peripheral and accidental; in Greek

30 Being necessarily ignorant of the whole prehistory, Heath [1926: I, 377] formulated this
as follows:

What then was Euclid’s intention, first in inserting some propositions not immediately
required, and secondly in making the proofs of the first ten practically independent
of each other? Surely the object was to show the power of the method of geometrical
algebra as much as to arrive at results.

31 This topic is dealt with in [Høyrup 1985], and, more crudely but more precisely in aim
and with broader historical scope, in [Høyrup 1980].
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theoretical it was, if not the very centre then at least an essential gauge.[32]

Stations on the road
In the Old Babylonian mathematical texts we find names for particular

lines, but we find no term for a linear extension in general; nor is any term
for an angle (or right angle) to be found. This does not mean that surveyors
could not speak about lines unless they were already defined as the length
or width of a field, the length or height of a wall, a carrying distance, etc.,
nor that they were unable to refer to the corner of a building; but tubqum
(“corner”) was not used as a technical term in mathematics. In general, it is
doubtful whether the terminology of Old Babylonian mathematics can at all
be characterized as “technical”. Instead, as concluded in [Høyrup 2002: 302],

it is rather a very standardized use of everyday language to describe an extra-
linguistic – computational and naive-geometrical – practice which was always
more standardized than the linguistic description. The linguistic description was
thereby analogous to our heuristic explanations in standardized ordinary
language of what goes on in those symbolic formulae which with us constitute
the level of real technical operation.

An early step in the unfolding of Greek theoretical critique was the
establishment of definitions. Irrespective of Aristotle’s claim that Socrates
“was the first to concentrate upon definition”,[33] discussions of semantic
delimitations go back as far in Greek (proto-)philosophy as we can follow
it – a very early example is Hesiod’s pointing out in Works and Days [ed.,
trans. Mazon 1979: 86] that the word “strife” (ερις) corresponds to two very
different things (namely peaceful competition and cruel war). The definition
of number as a “multitude composed of units”[34] is likely to go back at

32 In the introduction to the Method, Archimedes argues that “we should give no small
part of the credit to Democritus who was the first to make the assertion [that the cone
is the third part of the cylinder, and the pyramid of the prism] though he did not prove
it” [trans. Heath 1912: 13]. The rhetoric of the argument implies that the opposite attitude
prevailed; rhetoric may distort things but becomes ineffective if the recipient knows that
it is fully off the point – which we may therefore suppose that it was not, the recipient
(Eratosthenes) being as conversant as anyone with both the mathematics and the norms
that governed it at his times.

33 Metaphysics Α, 987b3, trans. [Tredennick 1933: I, 43]. The Greek term is ορισµος, related
to the Euclidean term ορος, the former meaning something like “delimitation”/“marking
out by boundaries”, the latter “limit”/boundary.

34 Itself an outcome of critique, which remained fateful for more than 2000 years and
encumbered the theoretical justification of algebra in the early Modern era, since this
attempt to make unambiguous and stable sense of the notion of a number excluded both
1 (a fact which Euclid forgets when defining a “part” in Elements VII, immediately after
he has repeated the habitual definition of a number!) but also fractions.
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least to the fifth century BCE, and many other definitions were known to,
and discussed by, Plato and Aristotle. Of particular interest are the
definitions of the various classes of (rectilinear) angles [trans. Heath 1926: I,
181]:

10. When a straight line set up on a straight line makes the adjacent angles
equal to one another, each of the equal angles is right [...].

11. An obtuse angle is an angle greater than a right angle.
12. An acute angle is an angle less than a right angle.

These were known to Aristotle, who refers to them in Metaphysics Μ 1084b7.
But they may have been a relatively fresh invention in his days, since Plato’s
Socrates speaks in Republic VI, 510C [trans. Shorey 1930: II, 111] of the three
kinds of angles as things of which geometers “do not deign to render any
further account to themselves or others, taking it for granted that they are
obvious to everybody”.[35]

A clear notion of a right angle is evidently essential for making proofs
like that of Elements II.6. In Aristotle’s times the above definition was
apparently supposed to be sufficient. This follows from can be derived from
Aristotle’s writings about the status of the Euclidean postulates. On the
whole, he does not seem to have heard of them [McKirahan 1992: 133–137],
which would suggest that their need had not yet been felt. Only the second
postulate appears to have been known to Aristotle in a formulation close to
what we find in the Elements – Physics III, 207b29–31 [trans. Hardie & Gaye
1930] explains that mathematicians “do not need the infinite and do not use
it. They postulate only that the finite straight line may be produced as far as
they wish”.

This implies that no need had as yet been discovered around the mid-
fourth century for postulate 4, “that all right angles are equal to one
another”, and thus, since this principle is essential for a large number of
proofs of the equality of figures, that it was tacitly believed to be inherent in
the definition. In Euclid’s time, on the other hand, it was recognized that
this was not the case. Although Greek geometers of the early fourth century
may have felt critique just as compulsory as their third-century successors,
the level at which critique was actually performed was raised in the
historical process – which of course cannot astonish if we recognize that
mathematical rigour is a human product and never absolute.

35 The passage may also mean, however, that they allow no further discussion beyond the
definitions they have given, in which case the definitions will have been older.
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Other Greeks

Figure 8. The procedure described in
Geometrica 24.3.

The community of “theoreticians”
(however that was delimited) was not the
only community of the classical world to
deal with mathematics. On one hand, the
social need for mathematical practitioners
was certainly not lower than it had been in
the older Egyptian and Mesopotamian
civilizations (nor probably significantly
higher); on the other, the diffuse area
encompassing Neopythagoreanism,
Hermeticism, Gnosticism and Neoplatonism
was also fond of mathematical metaphors
and astounding mathematical insights.[36]

In sources stemming from either
community, instances or traces of
mathematical reasoning can be located. In both cases what we find is naive,
not critical. I shall present one example from each.

The first, belonging to the practitioners’ tradition, comes from the
pseudo-Heronian Geometrica.[37] It is a Greek version of the riddle of “all
fours sides and the area”:

A square surface having the area together with the perimeter of 896 feet. To get
separated the area and the perimeter. I do like this: In general (καθολικως , i.e.,
independently of the parameter 896 – JH), place outside (εκτιθηµι ) the 4 units,
whose half becomes 2 feet. Putting this on top of itself becomes 4. Putting
together just this with the 896 becomes 900, whose squaring side becomes 30
feet. I have taken away underneath (υφαιρεω) the half, 2 feet are left. The re-
mainder becomes 28 feet. So the area is 784 feet, and let the perimeter be 112
feet. Putting together just all this becomes 896 feet. Let the area with the

36 [Cuomo 2000] is a pioneering investigation of the situation and interplay of these groups
in late Antiquity, in particular as reflected in Pappos’s Collection.

37 Geometrica 24:3, ed. [Heiberg 1912: 418], photographic reproduction of the manuscript
[Bruins 1964: I, 53]. As with the Babylonian texts, my translation is meant to be
pedantically literal. Actually, we should speak of “Heiberg’s” rather than of any pseudo-
Hero’s Geometrica. Heiberg produced the bulk of the conglomerate from two ancient
treatises which were already composite and cannot be traced back to a common source
(as told quite explicitly by Heiberg, but in Latin and in a different volume of the Heronian
Opera omnia [Heiberg 1914: xxiii–xxiv], for which reasons the fact has generally gone
unnoticed). These two treatises are represented, respectively, by Heiberg’s mss A+C and
mss S+V. Chapters 22 and 24, however, are independent treatises (24 another conglomer-
ate) which happen to be contained in the same codex as Geometrica/S but at a distance.
See [Høyrup 1997: 77].
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perimeter be that much, 896 feet.[38]

Figure 9. 10×10
arranged as a “race-

course”.

The procedure that is described is shown in Figure 8
(the manuscript only contains a drawing of a square
with inscribed value for the side and the area;
apparently, the geometry is meant to be either mental
or performed independently by the reader[39]). As we
see, the procedure is identical with what we have seen
in the text YBC 6967, apart from those details that
follow from the fact that we are dealing with a square
and not with a rectangle. The style is certainly
reasoned: “I have taken away underneath the half, 2
feet are left. The remainder [when these too are
removed] becomes 28 feet”; but it is fully naive. The text also points out
which numbers belong to the type in general (square area and perimeter) and
do not depend on the particular parameters of the example as a way to
safeguard potential generality; this is currently done in the various Geome-
trica-components and also in kindred medieval treatises, and already in one
text from Old Babylonian Susa.

The various Neopythagorean writings are less generous when it comes
to reveal the reasoning behind the mathematical facts they relate – maybe
because astounding mathematical facts, once we understand their grounds,
tend to be less astounding and therefore less serviceable for the display of
wisdom beyond ordinary human reason. Sometimes, however, reasons shine
through. One interesting case is found in Iamblichos’s commentary to
Nicomachos’s Introduction[40]: namely the observation that 10×10 laid out as
a square and counted “in horse-race” (see Figure 9) reveals that

10×10 = (1+2+...+9)+10+(9+...+2+1)

whence

10×10+10 = 2T10 ,

Tn being the triangular number of order n. This argument will have been
common Pythagorean or Neopythagorean lore, if we

38 Heiberg does not grasp the geometrical procedure that is described, for which reason
his commentaries are misguided, imputing the faulty understanding on the ancient copyist.

39 This is also the case in the Liber mensurationum, an Arabic treatise building on the
surveyors’ tradition (known from Gherardo da Cremona’s Latin translation, ed. [Busard
1968]): the sequence of problems about squares starts by a drawn square, that of rectangle
problems with a rectangle, etc. Only a few fourteenth- and fifteenth-century Latin and
Italian descendants of the tradition contain drawings illustrating the whole procedure.

40 Ed. [Pistelli 1975: 7525–27], cf. [Heath 1921: 113f].
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are to believe Iamblichos’s exposition, though hardly a discovery made
within this environ-
ment.[41] In any case, the naive type of reasoning will not have been left
behind when the Pythagorean scientologists took over from existing
mathematics that which they managed to understand (which could be
neither the theory of Elements X, Apollonian Conics, Archimedean
infinitesimal methods, nor “Heron’s” formula for the triangular area).

Proportionality – reasoning and its elimination
Does this mean that mathematics is always in some way reasoned, either

naively or critically? In some sense yes, simply because we are unlikely to
count as “mathematics” activities which are wholly devoid of
understanding, however much they have to do with countable items or take
place in geometrical space. But mathematics need not always be taught, nor
to be exercised as a reasoned practice. When learning to drive a car you
probably received a number of instructions and explanations, about
changing gears, about braking and aquaplaning, etc. But woe to your
passengers if you use your conscious mental reserves too intensively on
thinking about these matters when you move in the traffic.

A mathematician behaves no different. Most of the transformations of
symbolic expressions are performed automatically, leaving energy for
conscious reflection on the more intricate and still unfamiliar aspects of the
problem that is treated; the activity of the mathematician thus remains
reasoned, if only at a higher level.

But the routine activity of the mathematical practitioner may be different
in character. Remaining in the pre-Modern epoch, we may illustrate this
through a look at the way simple linear problems were dealt with.

A typical late medieval rule for solving such problems can be found in
Jacopo da Firenze’s Tractatus algorismi from 1307.[42] It runs as follows:

41 Firstly, in belongs squarely within the style of psēphos arithmetic that can be presupposed
to be at the basis of the “doctrine of odd and even”; this was generally familiar at too
early a moment to be Pythagorean – Epicharmos Fragment B 2 ([Diels 1951: I, 196; earlier
than c. 475 BCE]) refers to the representation of an odd number (“or, for that matter, an
even number”) by a collection of psēphoi as something trivially familiar. Secondly, the
ensuing formula for the triangular number,

Tn = ,
n 2 n

2
belongs no less squarely within a cluster of summation formulae shared between Seleucid
and Egyptian Demotic sources which betray no Greek influence in any other respect
[Høyrup 2000a]. Together with the whole technique of psēphos-based reasoning it is thus
almost certainly a borrowing from Near Eastern practical mathematicians.

42 MS. VAT Lat. 4826, fol. 17r. I translate from my own transcription of the manuscript
[1999].
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If some computation should be given to us in which three things were proposed,
then we should always multiply the thing that we want to know against that
which is not similar, and divide in the other thing, that is, in the other that
remains.

After this follows a sequence of examples, beginning with this:

I want to give you an example to the said rule, and I want to say thus, VII tornesi
are worth VIIII parigini.[43] Say me, how much will 20 tornesi be worth? Do thus,
the thing that you want to know is that which 20 tornesi will be worth. And the
not similar (thing) is that which VII tornesi are worth, that is, they are worth 9
parigini. And therefore we should multiply 9 parigini times 20, they make 180
parigini, and divide in 7, which is the third thing. Divide 180, from which results

25 and . And 25 parigini and will 20 tornesi be worth. And thus the similar5

7

5

7

computations are done.

This is the rule of three, and may be customary. But try to explain why it
works without using paper and symbolic manipulations to somebody who is
not too well trained in mathematics! The reason for the difficulty is of course
that the intermediate result 9 parigini × 20 tornesi has no concrete
interpretation.

Babylonian, Egyptian and ancient Greek calculators would have
proceeded differently. Their normal procedure would have been to divide
first (by whatever method they would use for division) 9 parigini by 7
tornesi. The result has an obvious concrete interpretation, the value of 1
torneso in parigini. Next, this could be multiplied by 20 in order to find the
value of 20 tornesi.

Why was this easy and didactically efficient procedure given up? The
key is inherent in the remark “by whatever method ...”. Division is difficult,
and often leads to rounding (either for reasons of principle, namely if you
have to multiply by a reciprocal, or because it may lead to a very unhandy
string of aliquot parts). Subsequent multiplication will also lead to
multiplication of the rounding error, quite apart from the practical difficulty
of multiplying an inconveniently composite numerical expression. Better
therefore postpone the division and make it the last step.

Why, then, was it not given up before?[44] Once again, the explanation
is straightforward and of a practical nature. It was set forth by Christian
Wolff alias Doktor Pangloss in his Mathematisches Lexikon [1716: 867]:

43 The parigino and the torneso are coins, minted in Paris and Tours, respectively.

44 In fact it was – but in India, where the characteristic terms of the rule of three can be
traced back to c. 400 BCE [Sarma, forthcoming], and in China, where it is introduced in
chapter 2 of the Nine Chapters on Arithmetic from the first century CE [trans. Vogel 1968:
18ff]. Medieval Islamic mathematicians (and probably practical reckoners) borrowed it
from India.
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It is true that performing mathematics can be learned without reasoning
mathematics; but then one remains blind in all affairs, achieves nothing with
suitable precision and in the best way, at times it may occur that one does not
find one’s way at all. Not to mention that it is easy to forget what one has
learned, and that that which one has forgotten is not so easily retrieved, because
everything depends only on memory

– in other words, only procedures that are performed so often that you run
no risk of forgetting them (like changing gears in a car) can be safely taught
as mere skills. Probably the scribes of Near Eastern Antiquity did not
perform the kind of proportional operations we are speaking of so often that
the appeal to their understanding could be given up safely.

More complex linear problems were often solved by means of the so-
called “double false position”, which is even more opaque. The intelligible
alternative to this rule can be illustrated by another quotation from Jacopo
(fol. 22r):

I have new fiorini and old fiorini. And the old fiorino is worth soldi 35, and the
new fiorino is worth soldi 37. And I have changed 100 fiorini now and old
together, and I have got for them libre 178. I want to know how many new fiorini
and how many old fiorini I had. Do thus, posit the case that all were of one of
these rates, that is, all 100 of whatever rate you want. And let us say that they
are all 100 old fiorini. And know how much they are worth for soldi 35 each, they
are worth 175. Now say thus, from 175 until 178 there is libre 3, which are soldi
60. Now divide soldi 60 in the price difference which there is from one fiorino to
the other, that is, from 35 soldi until 37, which is 2. Divide 60 in 2, 30 results.
And 30 fiorini shall we say have been of the opposite (sort) of those {..} which we
said were all old. And therefore we shall say that these 30 have been new, and
the rest until 100, which is 70, have been old. And thus I say that they were.

This is easily understood (once you know that 1 libra is worth 20 soldi) – and
precisely the same method (starting only from a fifty-fifty assumption) is
used in the Old Babylonian problem VAT 8389 #1 [ed. Neugebauer 1935: I,
317f, III, 58]. If the double false position had been applied, the procedure
had been much less comprehensible. One of false assumptions might be that
all were old, in which case they would have been worth 3500 soldi = 175
libre – three less than I really get. The other false assumption might be that
only 10 were old[45] and 90 hence new; in this case, I would have got 184
libre. The whole thing might be inserted in a graphical scheme

in which you were the to perform a cross-multiplication, add and divide by

45 The Indians might have chosen that none were old, since they operated with both zero
and negative numbers; but this simple choice was not accessible around the Mediterranean.

21



the sum of the two errors as written at bottom,[46] finding the real number

of old fiorini to be = 70.100×6 10×3

9

The principle can be explained as a linear interpolation; the real origin
may be the alligation rule. But the texts never give any explanation, they
simply set it forth as a rule to be followed. The obvious danger is that it
may happen to be applied to non-linear situations, and that the reckoner
would have no possibility to known that this was wrong.[47]

The moral is that Doktor Pangloss was right as soon as we get beyond the
most routine applications of mathematics. A fundament in reason is an
advantage not only in mathematical theory (where it belongs to the
definition and is thus no mere advantage) but also in every application that
goes beyond complete routine. It is therefore to be expected that the
mathematics teaching in any mathematical culture which went beyond mere
routine (on its own conditions for what could constitute routine) did include
appeals to reason – whether naive or critical, and whether in Greek style (or
that dubious reading of the Greek style in which we project ourselves) is a
different matter. If we cannot find traces of this reasoning in extant sources
we may safely conclude that this is due, either to failing understanding ofthe
sources on our part, or to the insufficiency of extant sources as mirrors of
educational practice. Tertium non datur.

46 Presupposing that one error is an excess, the other a deficit.

47 I am referring here to Mediterranean texts. Even though Arabic writers ascribe the rule
to India, the simple form is not found in extant Indian sources. But what may be a correct
iterated use in a non-linear situation turns up in a Sanskrit text from the fifteenth century
[Plofker 1996; cf. id., forthcoming] – if so, Indian reckoners knew what they were doing
when applying the rule, and why.
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